C12-4.2-Train Pythag/Spotlight Sim Tri Rel Rat Notes

Train 'a' leaves Vancouver heading South at $10 \mathrm{~m} / \mathrm{s}$ and train 'b' leaves heading East at $5 \mathrm{~m} / \mathrm{s}$? How far are they a part after two minutes? What is the speed at which the trains are moving apart at that time?

$\frac{d a}{d t}=10 \quad \frac{d b}{d t}=\left.5 \quad \frac{d c}{d t}\right|_{t=2}=?$

2 minutes $=120$ seconds

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
2 a \frac{d a}{d t}+2 b \frac{d b}{d t} & =2 c \frac{d c}{d t}
\end{aligned}
$$

$$
2(1200)(10)+2(600)(5)=2(1341.6) \frac{d c}{d t}
$$

$$
d=v t
$$

$a=v t$
$a=10 \times 120$

$$
\begin{aligned}
& b=v t \\
& b=5 \times 120
\end{aligned}
$$

$a=1200$ $b=600$

A 2 m tall person is walking away from a spotlight, 15 m from a wall, towards the wall at $0.7 \mathrm{~m} / \mathrm{s}$. How fast is the shadow on the wall changing when they are 7 m from the spotlight?

$$
\left.\frac{d y}{d t}\right|_{x=7}=?
$$

Spotlight

$$
\begin{aligned}
\frac{y}{15} & =\frac{2}{x} \\
x y & =30 \\
\frac{d x}{d t} y+\frac{d y}{d t} x & =0 \\
0.7(4.29)+\frac{d y}{d t}(7) & =0 \\
\frac{d y}{d t} & =-\frac{0.7(4.29)}{7} \\
\frac{d y}{d t} & =-0.429 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
x y=30
$$

$$
7 y=30
$$

$$
y=\frac{30}{7}
$$

$$
y=4.29
$$

C12-4.2 - Ladder Trig Related Rates Notes

The top of a 16 ft ladder slides down a wall at a rate of $3 \mathrm{ft} / \mathrm{s}$. At what rate is the base of the ladder sliding away from the wall when the latter is at a height of 8 ft on the wall.

$$
\frac{d y}{d t}=-3 \frac{f t}{s} \quad \begin{aligned}
& \text { *Length is shrinking: } \\
& \text { Derivative is Negative. }
\end{aligned}
$$

$$
\left.\frac{d x}{d t}\right|_{y=8}=?
$$

$$
x^{2}+y^{2}=c^{2}
$$

$$
x^{2}+8^{2}=16^{2}
$$

$$
x=\sqrt{16^{2}-8^{2}}
$$

$$
x=\sqrt{192}
$$

$$
x=8 \sqrt{3}
$$

$$
\begin{array}{rlrl}
x^{2}+y^{2} & =c^{2} \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t} & =2 c \frac{d c}{d t} \quad & & \text { *We can substitute } \\
\text { constants into the formula } \\
2(8 \sqrt{3}) \frac{d x}{d t}+2(8)(-3) & =0 \\
\frac{d x}{d t} & =\frac{3}{\sqrt{3}} \\
\frac{d x}{d t} & =\sqrt{3} \frac{f t}{s}
\end{array}
$$

What is the rate the angle at the bottom of the ladder changing?

$$
\begin{aligned}
\cos \theta & =\frac{x}{r} \\
\cos \theta & =\frac{x}{16} \\
-\sin \theta \frac{d \theta}{d t} & =\frac{1}{16} \frac{d x}{d t} \\
-\frac{8}{16} \frac{d \theta}{d t} & =\frac{1}{16} \sqrt{3}
\end{aligned}
$$

$$
\frac{d \theta}{d t}=-\frac{\sqrt{3}}{8} \frac{r a d}{s}
$$

$$
\sin \theta=\frac{8}{16}
$$

$$
\theta=\sin ^{-1}\left(\frac{1}{2}\right)
$$

$$
\theta=\frac{\pi}{6}
$$

*Real life is in Radians. Degrees are for children.
*I used cos because it used the rate I already solved on the top. Using sin and tan is possible but much more difficult based on the information and previously solved. We want our constant on the bottom.

C12-4.2-Similar Triangles/Cos Law Related Rates Notes

A 5 foot tall woman is walking away from a 20 foot lamp post at $3 \mathrm{~m} / \mathrm{s}$. What rate is her shadow increasing when she is 30 feet from the lamp post; and is her shadow getting bigger or smaller. How fast is the tip of her shadow moving?

$$
\begin{array}{rlrl}
\frac{d x}{d t}=3 \frac{m}{s} & & \left.\frac{d y}{d t}\right|_{x=30}=? \\
\frac{5}{20} & =\frac{y}{x+y} & & \\
5 x+5 y & =20 y & & \\
5 x & =15 y & & \\
x & =3 y & & \frac{d z}{d t}=\frac{d y}{d t}+\frac{d x}{d t} \\
\frac{d x}{d t} & =3 \frac{d y}{d t} & & \frac{d z}{d t}=1+3 \\
3 & =3 \frac{d y}{d t} & & \frac{d z}{d t}=4 \frac{m}{s}
\end{array}
$$

A float plane rising at 30 degrees above the horizontal flies over a boat at an altitude of 100 m at $60 \mathrm{~m} / \mathrm{s}$. How fast is the distance between the boat and the plane increasing after five seconds?

